熱處理知識

tags:    時間:2014-03-07 14:22:13
熱處理知識簡介
 金屬熱處理是將金屬工件放在一定的介質中加熱到適宜的溫度,並在此溫度中保持一定時間后,又以不同速度冷卻的一種工藝。 金屬組織 金屬:具有不透明、金屬光澤良好的導熱和導電性……
熱處理知識正文

 金屬熱處理是將金屬工件放在一定的介質中加熱到適宜的溫度,並在此溫度中保持一定時間后,又以不同速度冷卻的一種工藝。
金屬組織
金屬:具有不透明、金屬光澤良好的導熱和導電性並且其導電能力隨溫度的增高而減小,富 有延性和展性等特性的物質。金屬內部原子具有規律性排列的固體(即晶體)。
合金:由兩種或兩種以上金屬或金屬與非金屬組成,具有金屬特性的物質。 相:合金中成份、結構、性能相同的組成部分。
固溶體:是一個(或幾個)組元的原子(化合物)溶入另一個組元的晶格中,而仍保持另一 組元的晶格類型的固態金屬晶體,固溶體分間隙固溶體和置換固溶體兩種。
固溶強化:由於溶質原子進入溶劑晶格的間隙或結點,使晶格發生畸變,使固溶體硬度和強 度升高,這種現象叫固溶強化現象。
化合物:合金組元間發生化合作用,生成一種具有金屬性能的新的晶體固態結構。
機械混合物:由兩種晶體結構而組成的合金組成物,雖然是兩面種晶體,卻是一種組成成分, 具有獨立的機械性能。
鐵素體:碳在 a-Fe(體心立方結構的鐵)中的間隙固溶體。
奧氏體:碳在 g-Fe(面心立方結構的鐵)中的間隙固溶體。
滲碳體:碳和鐵形成的穩定化合物(Fe3c)。
珠光體:鐵素體和滲碳體組成的機械混合物(F+Fe3c 含碳 0.8%) 萊氏體:滲碳體和奧氏體組成的機械混合物(含碳 4.3%)

金屬熱處理是機械製造中的重要工藝之一,與其它加工工藝相比,熱處理一般不改變工件的 形狀和整體的化學成分,而是通過改變工件內部的顯微組織,或改變工件表面的化學成分, 賦予或改善工件的使用性能。其特點是改善工件的內在質量,而這一般不是肉眼所能看到的。為使金屬工件具有所需要的力學性能、物理性能和化學性能,除合理選用材料和各種成形工藝外,熱處理工藝往往是必不可少的。鋼鐵是機械工業中應用最廣的材料,鋼鐵顯微組織複雜,可以通過熱處理予以控制,所以鋼鐵的熱處理是金屬熱處理的主要內容。另外,鋁、銅、鎂、鈦等及其合金也都可以通過熱處理改變其力學、物理和化學性能,以獲得不同的使用性能。 在從石器時代進展到銅器時代和鐵器時代的過程中,熱處理的作用逐漸為人們所認識。早在 公元前 770~前 222 年,中國人在生產實踐中就已發現,銅鐵的性能會因溫度和加壓變形的影響而變化。白口鑄鐵的柔化處理就是製造農具的重要工藝。公元前六世紀,鋼鐵兵器逐漸被採用,為了提高鋼的硬度,淬火工藝遂得到迅速發展。中國河北省易縣燕下都出土的兩把劍和一把戟,其顯微組織中都有馬氏體存在,說明是經過淬火的。隨著淬火技術的發展,人們逐漸發現淬冷劑對淬火質量的影響。三國蜀人蒲元曾在今陝西斜谷為諸葛亮打制 3000 把刀,相傳是派人到成都取水淬火的。這說明中國在古代就注意到不同水質的冷卻能力了,同時也注意了油和尿的冷卻能力。中國出土的西漢(公元前206~公元24)中山靖王墓中的寶劍,心部含碳量為 0.15~0.4%,而表面含碳量卻達 0.6%以上,說明已應用了滲碳工藝。但當時作為個人“手藝”的秘密,不肯外傳,因而發展很慢。
1863年,英國金相學家和地質學家展示

 

了鋼鐵在顯微鏡下的六種不同的金相組織,證明了鋼在加熱和冷卻時,內部會發生組織改變,鋼中高溫時的相在急冷時轉變為一種較硬的相。

法國人奧斯蒙德確立的鐵的同素異構理論,以及英國人奧斯汀最早制定的鐵碳相圖,為現代 熱處理工藝初步奠定了理論基礎。與此同時,人們還研究了在金屬熱處理的加熱過程中對金 屬的保護方法,以避免加熱過程中金屬的氧化和脫碳等。
1850~1880年,對於應用各種氣體(諸如氫氣、煤氣、一氧化碳等)進行保護加熱曾有一系列專利。1889~1890 年英國人萊克獲得多種金屬光亮熱處理的專利。二十世紀以來,金屬物理的發展和其它新技術的移植應用,使金屬熱處理工藝得到更大發展。一個顯著的進展是 1901~1925 年,在工業生產中應用轉筒爐進行氣體滲碳;30年代出現 露點電位差計,使爐內氣氛的碳勢達到可控,以後又研究出用二氧化碳紅外儀、氧探頭等進 一步控制爐內氣氛碳勢的方法;60年代,熱處理技術運用了等離子場的作用,發展了離子滲氮、滲碳工藝;激光、電子束技術的應用,又使金屬獲得了新的表面熱處理和化學熱處理方法。

金屬熱處理的工藝
熱處理工藝一般包括加熱、保溫、冷卻三個過程,有時只有加熱和冷卻兩個過程。這些過程 互相銜接,不可間斷。加熱是熱處理的重要工序之一。金屬熱處理的加熱方法很多,最早是採用木炭和煤作為熱源,進而應用液體和氣體燃料。電的應用使加熱易於控制,且無環境污染。利用這些熱源可以直接加熱,也可以通過熔融的鹽或金屬,以至浮動粒子進行間接加熱。 金屬加熱時,工件暴露在空氣中,常常發生氧化、脫碳(即鋼鐵零件表面碳含量降低),這對於熱處理后零件的表面性能有很不利的影響。因而金屬通常應在可控氣氛或保護氣氛中、熔融鹽中和真空中加熱,也可用塗料或包裝方法進行保護加熱。加熱溫度是熱處理工藝的重要工藝參數之一,選擇和控制加熱溫度,是保證熱處理質量的主要問題。加熱溫度隨被處理的金屬材料和熱處理的目的不同而異,但一般都是加熱到相變 溫度以上,以獲得高溫組織。另外轉變需要一定的時間,因此當金屬工件表面達到要求的加 熱溫度時,還須在此溫度保持一定時間,使內外溫度一致,使顯微組織轉變完全,這段時間稱為保溫時間。採用高能密度加熱和表面熱處理時,加熱速度極快,一般就沒有保溫時間,而化學熱處理的保溫時間往往較長。冷卻也是熱處理工藝過程中不可缺少的步驟,冷卻方法因工藝不同而不同,主要是控制冷卻速度。一般退火的冷卻速度最慢,正火的冷卻速度較快,淬火的冷卻速度更快。但還因鋼種 不同而有不同的要求,例如空硬鋼就可以用正火一樣的冷卻速度進行淬硬。 金屬熱處理工藝大體可分為整體熱處理、表面熱處理和化學熱處理三大類。根據加熱介質、 加熱溫度和冷卻方法的不同,每一大類又可區分為若干不同的熱處理工藝。同一種金屬採用 不同的熱處理工藝,可獲得不同的組織,從而具有不同的性能。鋼鐵是工業上應用最廣的金 屬,而且鋼鐵顯微組織也最為複雜,因此鋼鐵熱處理工藝種類繁多。 整體熱處理是對工件整體加熱,然後以適當的速度冷卻,以改變其整體力學性能的金屬熱處 理工藝。鋼鐵

 

整體熱處理大致有退火、正火、淬火和回火四種基本工藝。 退火是將工件加熱到適當溫度,根據材料和工件尺寸採用不同的保溫時間,然後進行緩慢冷卻,目的是使金屬內部組織達到或接近平衡狀態,獲得良好的工藝性能和使用性能,或者為進一步淬火作組織準備。正火是將工件加熱到適宜的溫度后在空氣中冷卻,正火的效果同退火相似,只是得到的組織更細,常用於改善材料的切削性能,也有時用於對一些要求不高的 零件作為最終熱處理。 淬火是將工件加熱保溫后,在水、油或其它無機鹽、有機水溶液等淬冷介質中快速冷卻。淬 火后鋼件變硬,但同時變脆。為了降低鋼件的脆性,將淬火后的鋼件在高於室溫而低於 650℃ 的某一適當溫度進行長時間的保溫,再進行冷卻,這種工藝稱為回火。退火、正火、淬火、 回火是整體熱處理中的“四把火”,其中的淬火與回火關係密切,常常配合使用,缺一不可。
“四把火”隨著加熱溫度和冷卻方式的不同,又演變出不同的熱處理工藝。為了獲得一定 的強度和韌性,把淬火和高溫回火結合起來的工藝,稱為調質。某些合金淬火形成過飽和固 溶體后,將其置於室溫或稍高的適當溫度下保持較長時間,以提高合金的硬度、強度或電性 磁性等。這樣的熱處理工藝稱為時效處理。
把壓力加工形變與熱處理有效而緊密地結合起來進行,使工件獲得很好的強度、韌性配合的 方法稱為形變熱處理;在負壓氣氛或真空中進行的熱處理稱為真空熱處理,它不僅能使工件不氧化,不脫碳,保持處理后工件表面光潔,提高工件的性能,還可以通入滲劑進行化學熱處理。
表面熱處理是只加熱工件表層,以改變其表層力學性能的金屬熱處理工藝。為了只加熱工件表層而不使過多的熱量傳入工件內部,使用的熱源須具有高的能量密度,即在單位面積的工件上給予較大的熱能,使工件表層或局部能短時或瞬時達到高溫。表面熱處理的主要方法有火焰淬火和感應加熱熱處理,常用的熱源有氧乙炔或氧丙烷等火焰、感應電流、激光和電子束等。
化學熱處理是通過改變工件表層化學成分、組織和性能的金屬熱處理工藝。化學熱處理與表 面熱處理不同之處是後者改變了工件表層的化學成分。化學熱處理是將工件放在含碳、氮或其它合金元素的介質(氣體、液體、固體)中加熱,保溫較長時間,從而使工件表層滲入碳、氮、硼和鉻等元素。滲入元素后,有時還要進行其它熱處理工藝如淬火及回火。化學熱處理的主要方法有滲碳、滲氮、滲金屬。
熱處理是機械零件和工模具製造過程中的重要工序之一。大體來說,它可以保證和提高工件的各種性能,如耐磨、耐腐蝕等。還可以改善毛坯的組織和應力狀態,以利於進行各種冷、熱加工。
例如白口鑄鐵經過長時間退火處理可以獲得可鍛鑄鐵,提高塑性;齒輪採用正確的熱處理工藝,使用壽命可以比不經熱處理的齒輪成倍或幾十倍地提高;另外,價廉的碳鋼通過滲入某些合金元素就具有某些價昂的合金鋼性能,可以代替某些耐熱鋼、不鏽鋼;工模具則幾乎全部需要經過熱處理方可使用。
鋼的分類
鋼是以鐵、碳為主要成分的合金,它的含碳量一般小於 2.11% 。鋼是經濟建設中極為重要 的金屬材

 

料。 鋼按化學成分分為碳素鋼(簡稱碳鋼)與合金鋼兩大類。碳鋼是由生鐵冶鍊獲得的合金,除 鐵、碳為其主要成分外,還含有少量的錳、硅、硫、磷等雜質。碳鋼具有一定的機械性能, 又有良好的工藝性能,且價格低廉。因此,碳鋼獲得了廣泛的應用。但隨著現代工業與科學 技術的迅速發展,碳鋼的性能已不能完全滿足需要,於是人們研製了各種合金鋼。合金鋼是 在碳鋼基礎上,有目的地加入某些元素(稱為合金元素)而得到的多元合金。與碳鋼比,合 金鋼的性能有顯著的提高,故應用日益廣泛。 由於鋼材品種繁多,為了便於生產、保管、選用與研究,必須對鋼材加以分類。按鋼材的用 途、化學成分、質量的不同,可將鋼分為許多類:
一. 按用途分類 按鋼材的用途可分為結構鋼、工具鋼、特殊性能鋼三大類。
結構鋼:
1. 用作各種機器零件的鋼。它包括滲碳鋼、調質鋼、彈簧鋼及滾動軸承鋼。
2.用作工程結構的鋼。它包括碳素鋼中的甲、乙、特類鋼及普通低合金鋼。
工具鋼:用來製造各種工具的鋼。根據工具用途不同可分為刃具鋼、模具鋼與量具鋼。
特殊性能鋼:是具有特殊物理化學性能的鋼。可分為不鏽鋼、耐熱鋼、耐磨鋼、磁鋼等。 二. 按化學成分分類
按鋼材的化學成分可分為碳素鋼和合金鋼兩大類。

碳素鋼:按含碳量又可分為低碳鋼(含碳量≤0.25%);中碳鋼(0.25%<含碳量<0.6%);高 碳鋼(含碳量≥0.6%)。 合金鋼:按合金元素含量又可分為低合金鋼(合金元素總含量≤5%);中合金鋼(合金元素 總含量=5%--10%);高合金鋼(合金元素總含量>10%)。此外,根據鋼中所含主要合金元素 種類不同,也可分為錳鋼、鉻鋼、鉻鎳鋼、鉻錳鈦鋼等。
三. 按質量分類 按鋼材中有害雜質磷、硫的含量可分為普通鋼(含磷量≤0.045%、含硫量≤0.055%;或磷、 硫含量均≤0.050%);優質鋼(磷、硫含量均≤0.040%);高級優質鋼(含磷量≤0.035%、含 硫量≤0.030%)。 此外,還有按冶鍊爐的種類,將鋼分為平爐鋼(酸性平爐、鹼性平爐),空氣轉爐鋼(酸性 轉爐、鹼性轉爐、氧氣頂吹轉爐鋼)與電爐鋼。按冶鍊時脫氧程度,將鋼分為沸騰鋼(脫氧 不完全),鎮靜鋼(脫氧比較完全)及半鎮靜鋼。 鋼廠在給鋼的產品命名時,往往將用途、成分、質量這三種分類方法結合起來。如將鋼稱為 普通碳素結構鋼、優質碳素結構鋼、碳素工具鋼、高級優質碳素工具鋼、合金結構鋼、合金 工具鋼等。
金屬材料的機械性能 金屬材料的性能一般分為工藝性能和使用性能兩類。所謂工藝性能是指機械零件在加工製造 過程中,金屬材料在所定的冷、熱加工條件下表現出來的性能。金屬材料工藝性能的好壞, 決定了它在製造過程中加工成形的適應能力。由於加工條件不同,要求的工藝性能也就不同, 如鑄造性能、可焊性、可鍛性、熱處理性能、切削加工性等。所謂使用性能是指機械零件在 使用條件下,金屬材料表現出來的性能,它包括機械性能、物理性能、化學性能等。金屬材 料使用性能的好壞,決定了它的使用範圍與使用壽命。 在機械製造業中,一般機械零件都是在常溫、常壓和非強烈腐蝕性介質中使用的,且在使用

 

過程中各機械零件都將承受不同載荷的作用。金屬材料在載荷作用下抵抗破壞的性能,稱為機械性能(或稱為力學性能)。 金屬材料的機械性能是零件的設計和選材時的主要依據。外載入荷性質不同(例如拉伸、壓 縮、扭轉、衝擊、循環載荷等),對金屬材料要求的機械性能也將不同。常用的機械性能包 括:強度、塑性、硬度、衝擊韌性、多次衝擊抗力和疲勞極限等。下面將分別討論各種機械性能。
1. 強度 強度是指金屬材料在靜荷作用下抵抗破壞(過量塑性變形或斷裂)的性能。由於載荷的作用 方式有拉伸、壓縮、彎曲、剪切等形式,所以強度也分為抗拉強度、抗壓強度、抗彎強度、 抗剪強度等。各種強度間常有一定的聯繫,使用中一般較多以抗拉強度作為最基本的強度指
針。
2. 塑性 塑性是指金屬材料在載荷作用下,產生塑性變形(永久變形)而不破壞的能力。
3. 硬度 硬度是衡量金屬材料軟硬程度的指針。目前生產中測定硬度方法最常用的是壓入硬度法,它 是用一定幾何形狀的壓頭在一定載荷下壓入被測試的金屬材料表面,根據被壓入程度來測定 其硬度值。 常用的方法有布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)和維氏硬度(HV)等方法。
4. 疲勞 前面所討論的強度、塑性、硬度都是金屬在靜載荷作用下的機械性能指針。實際上,許多機 器零件都是在循環載荷下工作的,在這種條件下零件會產生疲勞。

5. 衝擊韌性 以很大速度作用於機件上的載荷稱為衝擊載荷,金屬在衝擊載荷作用下抵抗破壞的能力叫做 衝擊韌性。
退火---淬火---回火 一.退火的種類
1. 完全退火和等溫退火 完全退火又稱重結晶退火,一般簡稱為退火,這種退火主要用於亞共析成分的各種碳鋼和合 金鋼的鑄,鍛件及熱軋型材,有時也用於焊接結構。一般常作為一些不重工件的最終熱處理, 或作為某些工件的預先熱處理。
2. 球化退火 球化退火主要用於過共析的碳鋼及合金工具鋼(如製造刃具,量具,模具所用的鋼種)。其 主要目的在於降低硬度,改善切削加工性,並為以後淬火作好準備。
3. 去應力退火 去應力退火又稱低溫退火(或高溫回火),這種退火主要用來消除鑄件,鍛件,焊接件,熱 軋件,冷拉件等的殘餘應力。如果這些應力不予消除,將會引起鋼件在一定時間以後,或在 隨後的切削加工過程中產生變形或裂紋。 二.淬火時,最常用的冷卻介質是鹽水,水和油。鹽水淬火的工件,容易得到高的硬度和光 潔的表面,不容易產生淬不硬的軟點,但卻易使工件變形嚴重,甚至發生開裂。而用油作淬 火介質只適用於過冷奧氏體的穩定性比較大的一些合金鋼或小尺寸的碳鋼工件的淬火。 三.鋼回火的目的1. 降低脆性,消除或減少內應力,鋼件淬火后存在很大內應力和脆性,如不及時回火往往 會使鋼件發生變形甚至開裂。
2. 獲得工件所要求的機械性能,工件經淬火后硬度高而脆性大,為了滿足各種工件的不同 性能的要求,可以通過適當回火的配合來調整硬度,減小脆性,得到所需要的韌性,塑性。
3. 穩定工件尺寸
4. 對於退火難以軟化的某些合金鋼,在淬火(或正火)后常採用高溫回火,使鋼中碳化物 適當聚集,將硬度降低,以

 

利切削加工。
爐型的選擇 爐型應依據不同的工藝要求及工件的類型來決定
1.對於不能成批定型生產的,工件大小不相等的,種類較多的,要求工藝上具有通用性、 多用性的,可選用箱式爐。
2.加熱長軸類及長的絲桿,管子等工件時,可選用深井式電爐。
3.小批量的滲碳零件,可選用井式氣體滲碳爐。
4.對於大批量的汽車、拖拉機齒輪等零件的生產可選連續式滲碳生產線或箱式多用爐。
5.對衝壓件板材坯料的加熱大批量生產時,最好選用滾動爐,輥底爐。
6.對成批的定型零件,生產上可選用推桿式或傳送帶式電阻爐(推桿爐或鑄帶爐)
7.小型機械零件如:螺釘,螺母等可選用振底式爐或網帶式爐。
8.鋼球及滾柱熱處理可選用內螺旋的迴轉管爐。
9.有色金屬錠坯在大批量生產時可用推桿式爐,而對有色金屬小零件及材料可用空氣循環 加熱爐。
加熱缺陷及控制 一、過熱現象
我們知道熱處理過程中加熱過熱最易導致奧氏體晶粒的粗大,使零件的機械性能下降。
1.一般過熱:加熱溫度過高或在高溫下保溫時間過長,引起奧氏體晶粒粗化稱為過熱。粗大

的奧氏體晶粒會導致鋼的強韌性降低,脆性轉變溫度升高,增加淬火時的變形開裂傾向。而 導致過熱的原因是爐溫儀錶失控或混料(常為不懂工藝發生的)。過熱組織可經退火、正火 或多次高溫回火后,在正常情況下重新奧氏化使晶粒細化。
2.斷口遺傳:有過熱組織的鋼材,重新加熱淬火后,雖能使奧氏體晶粒細化,但有時仍出現 粗大顆粒狀斷口。產生斷口遺傳的理論爭議較多,一般認為曾因加熱溫度過高而使 MnS 之類 的雜物溶入奧氏體並富集於晶介面,而冷卻時這些夾雜物又會沿晶介面析出,受衝擊時易沿 粗大奧氏體晶界斷裂。
3.粗大組織的遺傳:有粗大馬氏體、貝氏體、魏氏體組織的鋼件重新奧氏化時,以慢速加熱 到常規的淬火溫度,甚至再低一些,其奧氏體晶粒仍然是粗大的,這種現象稱為組織遺傳性。 要消除粗大組織的遺傳性,可採用中間退火或多次高溫回火處理。
二、過燒現象 加熱溫度過高,不僅引起奧氏體晶粒粗大,而且晶界局部出現氧化或熔化,導致晶界弱化, 稱為過燒。鋼過燒后性能嚴重惡化,淬火時形成龜裂。過燒組織無法恢復,只能報廢。因此 在工作中要避免過燒的發生。
三、脫碳和氧化 鋼在加熱時,表層的碳與介質(或氣氛)中的氧、氫、二氧化碳及水蒸氣等發生反應,降低 了表層碳濃度稱為脫碳,脫碳鋼淬火后表面硬度、疲勞強度及耐磨性降低,而且表面形成殘 余拉應力易形成表面網狀裂紋。 加熱時,鋼表層的鐵及合金與元素與介質(或氣氛)中的氧、二氧化碳、水蒸氣等發生反應 生成氧化物膜的現象稱為氧化。高溫(一般 570 度以上)工件氧化后尺寸精度和表面光亮度 惡化,具有氧化膜的淬透性差的鋼件易出現淬火軟點。 為了防止氧化和減少脫碳的措施有:工件表面塗料,用不鏽鋼箔包裝密封加熱、採用鹽浴爐 加熱、採用保護氣氛加熱(如凈化后的惰性氣體、控制爐內碳勢)、火焰燃燒爐(使爐氣呈 還原性)
四、氫脆現象 高強度鋼在富氫氣氛中加熱時出現塑性和韌性降低的現象稱為氫脆。出現氫脆的工件通過除 氫處理(

 

如回火、時效等)也能消除氫脆,採用真空、低氫氣氛或惰性氣氛加熱可避免氫脆。
幾種常見熱處理概念
1. 正火:將鋼材或鋼件加熱到臨界點 AC3 或 ACM 以上的適當溫度保持一定時間后在空氣中 冷卻,得到珠光體類組織的熱處理工藝。
2. 退火 annealing:將亞共析鋼工件加熱至 AC3 以上 20—40 度,保溫一段時間后,隨爐 緩慢冷卻(或埋在砂中或石灰中冷卻)至 500 度以下在空氣中冷卻的熱處理工藝
3. 固溶熱處理:將合金加熱至高溫單相區恆溫保持,使過剩相充分溶解到固溶體中,然後 快速冷卻,以得到過飽和固溶體的熱處理工藝
4. 時效:合金經固溶熱處理或冷塑性形變后,在室溫放置或稍高於室溫保持時,其性能隨 時間而變化的現象。
5. 固溶處理:使合金中各種相充分溶解,強化固溶體並提高韌性及抗蝕性能,消除應力與 軟化,以便繼續加工成型
6. 時效處理:在強化相析出的溫度加熱並保溫,使強化相沉澱析出,得以硬化,提高強度
7. 淬火:將鋼奧氏體化后以適當的冷卻速度冷卻,使工件在橫截面內全部或一定的範圍內 發生馬氏體等不穩定組織結構轉變的熱處理工藝
8. 回火:將經過淬火的工件加熱到臨界點 AC1 以下的適當溫度保持一定時間,隨後用符合 要求的方法冷卻,以獲得所需要的組織和性能的熱處理工藝
9. 鋼的碳氮共滲:碳氮共滲是向鋼的表層同時滲入碳和氮的過程。習慣上碳氮共滲又稱為

氰化,目前以中溫氣體碳氮共滲和低溫氣體碳氮共滲(即氣體軟氮化)應用較為廣泛。中溫 氣體碳氮共滲的主要目的是提高鋼的硬度,耐磨性和疲勞強度。低溫氣體碳氮共滲以滲氮為 主,其主要目的是提高鋼的耐磨性和抗咬合性。
10. 調質處理 quenching and tempering:一般習慣將淬火加高溫回火相結合的熱處理稱 為調質處理。調質處理廣泛應用於各種重要的結構零件,特別是那些在交變負荷下工作的連 桿、螺栓、齒輪及軸類等。調質處理后得到回火索氏體組織,它的機械性能均比相同硬度的 正火索氏體組織為優。它的硬度取決於高溫回火溫度並與鋼的回火穩定性和工件截面尺寸有 關,一般在 HB200—350 之間。
11. 釺焊:用釺料將兩種工件粘合在一起的熱處理工藝 回火的種類及應用
根據工件性能要求的不同,按其回火溫度的不同,可將回火分為以下幾種:
(一)低溫回火(150-250 度) 低溫回火所得組織為回火馬氏體。其目的是在保持淬火鋼的高硬度和高耐磨性的前提下,降 低其淬火內應力和脆性,以免使用時崩裂或過早損壞。它主要用於各種高碳的切削刃具,量 具,冷沖模具,滾動軸承以及滲碳件等,回火后硬度一般為 HRC58-64。
(二)中溫回火(350-500 度) 中溫回火所得組織為回火屈氏體。其目的是獲得高的屈服強度,彈性極限和較高的韌性。因 此,它主要用於各種彈簧和熱作模具的處理,回火后硬度一般為 HRC35-50。
(三)高溫回火(500-650 度) 高溫回火所得組織為回火索氏體。習慣上將淬火加高溫回火相結合的熱處理稱為調質處理, 其目的是獲得強度,硬度和塑性,韌性都較好的綜合機械性能。因此,廣泛用於汽車,拖拉 機,機床等的重要結構零

 

件,如連桿,螺栓,齒輪及軸類。回火后硬度一般為 HB200-330。 氣氛與金屬的化學反應
一. 氣氛與鋼鐵的化學反應
1. 氧化
2Fe+O2→2FeO Fe+H2O→FeO+H2
FeC+CO2→Fe+2CO
2. 還原
FeO+H2→Fe+H2O FeO+CO→Fe+O2
3. 滲碳
2CO→[C]+CO2
Fe+[C]→FeC CH4→[C]+2H2
4.滲氮
2NH3→2[N]+3H2
Fe+[N]→FeN
二. 各種氣氛對金屬的作用
氮氣:在≥1000 度時會與 Cr,CO,Al.Ti 反應 氫氣:可使銅,鎳,鐵,鎢還原。當氫氣中的水含量達到百分之 0.2—0.3 時,會使鋼脫碳 水:≥800 度時,使鐵、鋼氧化脫碳,與銅不反應 一氧化碳:其還原性與氫氣相似,可使鋼滲碳
三. 各類氣氛對電阻組件的影響 鎳鉻絲,鐵鉻鋁:含硫氣氛對電阻絲有害

鋼的氮化及碳氮共滲 鋼的氮化(氣體氮化)
概念:氮化是向鋼的表面層滲入氮原子的過程,其目的是提高表面硬度和耐磨性,以及提高 疲勞強度和抗腐蝕性。 它是利用氨氣在加熱時分解出活性氮原子,被鋼吸收后在其表面形成氮化層,同時向心部擴 散。 氮化通常利用專門設備或井式滲碳爐來進行。適用於各種高速傳動精密齒輪、機床主軸(如 鏜桿、磨床主軸),高速柴油機曲軸、閥門等。 氮化工件工藝路線:鍛造-退火-粗加工-調質-精加工-除應力-粗磨-氮化-精磨或研 磨。 由於氮化層薄,並且較脆,因此要求有較高強度的心部組織,所以要先進行調質熱處理,獲 得回火索氏體,提高心部機械性能和氮化層質量。 鋼在氮化后,不再需要進行淬火便具有很高的表面硬度大於 HV850)及耐磨性。 氮化處理溫度低,變形很小,它與滲碳、感應表面淬火相比,變形小得多
鋼的碳氮共滲:碳氮共滲是向鋼的表層同時滲入碳和氮的過程,習慣上碳氮共滲又稱作氰化。 目前以中溫氣體碳氮共滲和低溫氣體碳氮共滲(即氣體軟氮化)應用較是廣。中溫氣體碳氮 共滲的主要目的是提高鋼的硬度,耐磨性和疲勞強度,低溫氣體碳氮共滲以滲氮為主,其主 要目的是提高鋼的耐磨性和抗咬合性。
鈹青銅的熱處理
鈹 青銅 是一種 用途 極廣的 沉澱 硬化型 合金 。經固 溶及 時效處 理后 ,強度 可達
1250-1500MPa(1250-1500 公斤)。其熱處理特點是:固溶處理后具有良好的塑性,可進行冷 加工變形。但再進行時效處理后,卻具有極好的彈性極限,同時硬度、強度也得到提高。
(1) 鈹青銅的固溶處理
一般固溶處理的加熱溫度在 780-820℃之間,對用作彈性組件的材料,採用 760-780℃,主 要是防止晶粒粗大影響強度。固溶處理爐溫均勻度應嚴格控制在 5℃。保溫時間一般可按 1 小時/25mm 計算,鈹青銅在空氣或氧化性氣氛中進行固溶加熱處理時,表面會形成氧化膜。 雖然對時效強化后的力學性能影響不大,但會影響其冷加工時工模具的使用壽命。為避免氧 化應在真空爐或氨分解、惰性氣體、還原性氣氛(如氫氣、一氧化碳等)中加熱,從而獲得 光亮的熱處理效果。此外,還要注意盡量縮短轉移時間(此淬水時),否則會影響時效后的 機械性能。薄形材料不得超過 3 秒,一般零件不超過 5 秒。淬火介質

 

一般採用水(無加熱的 要求),當然形狀複雜的零件為了避免變形也可採用油。
(2) 鈹青銅的時效處理
鈹青銅的時效溫度與 Be 的含量有關,含 Be 小於 2.1%的合金均宜進行時效處理。對於 Be 大
於 1.7%的合金,最佳時效溫度為 300-330℃,保溫時間 1-3 小時(根據零件形狀及厚度)。
Be 低於 0.5%的高導電性電極合金,由於溶點升高,最佳時效溫度為 450-480℃,保溫時間
1-3 小時。近年來還發展出了雙級和多級時效,即先在高溫短時時效,而後在低溫下長時間 保溫時效,這樣做的優點是性能提高但變形量減小。為了提高鈹青銅時效后的尺寸精度,可 採用夾具夾持進行時效,有時還可採用兩段分開時效處理。
(3) 鈹青銅的去應力處理
鈹青銅去應力退火溫度為 150-200℃,保溫時間 1-1.5 小時,可用於消除因金屬切削加工、 校直處理、冷成形等產生的殘餘應力,穩定零件在長期使用時的形狀及尺寸精度。 熱處理應力及其影響
熱處理殘餘力是指工件經熱處理后最終殘存下來的應力,對工件的形狀,&127;尺寸和性 能都有極為重要的影響。當它超過材料的屈服強度時,&127;便引起工件的變形,超過材料的

強度極限時就會使工件開裂,這是它有害的一面,應當減少和消除。但在一定條件下控制應力 使之合理分佈,就可以提高零件的機械性能和使用壽命,變有害為有利。分析鋼在熱處理過程 中應力的分佈和變化規律,使之合理分佈對提高產品質量有著深遠的實際意義。例如關於表 層殘餘壓應力的合理分佈對零件使用壽命的影響問題已經引起了人們的廣泛重視。 一、鋼的熱處理應力 工件在加熱和冷卻過程中,由於表層和心部的冷卻速度和時間的不一致,形成溫差,就會導致 體積膨脹和收縮不均而產生應力,即熱應力。在熱應力的作用下,由於表層開始溫度低於心部, 收縮也大於心部而使心部受拉,當冷卻結束時,由於心部最後冷卻體積收縮不能自由進行而 使表層受壓心部受拉。即在熱應力的作用下最終使工件表層受壓而心部受拉。這種現象受到 冷卻速度,材料成分和熱處理工藝等因素的影響。當冷卻速度愈快,含碳量和合金成分愈高, 冷卻過程中在熱應力作用下產生的不均勻塑性變形愈大,最後形成的殘餘應力就愈大。另一 方面鋼在熱處理過程中由於組織的變化即奧氏體向馬氏體轉變時,因比容的增大會伴隨工件 體積的膨脹,&127;工件各部位先後相變,造成體積長大不一致而產生組織應力。組織應力變 化的最終結果是表層受拉應力,心部受壓應力,恰好與熱應力相反。組織應力的大小與工件在 馬氏體相變區的冷卻速度,形狀,材料的化學成分等因素有關。 實踐證明,任何工件在熱處理過程中,&127;只要有相變,熱應力和組織應力都會發生。&127; 只不過熱應力在組織轉變以前就已經產生了,而組織應力則是在組織轉變過程中產生的,在 整個冷卻過程中,熱應力與組織應力綜合作用的結果,&127;就是工件中實際存在的應力。這 兩種應力綜合作用的結果是十分複雜的,受著許多因素的影響,如成分、形狀、熱處理工藝等。 就其發展過程來說只有兩種類型,即熱應力和組織應力,作用方向相反時二者抵消,作用方向 相同時二者相互迭加。不管是相

 

互抵消還是相互迭加,兩個應力應有一個佔主導因素,熱應力 佔主導地位時的作用結果是工件心部受拉,表面受壓。&127;組織應力佔主導地位時的作用結 果是工件心部受壓表面受拉。
二、熱處理應力對淬火裂紋的影響 存在於淬火件不同部位上能引起應力集中的因素(包括冶金缺陷在內),對淬火裂紋的產生都 有促進作用,但只有在拉應力場內(&127;尤其是在最大拉應力下)才會表現出來,&127;若在 壓應力場內並無促裂作用。 淬火冷卻速度是一個能影響淬火質量並決定殘餘應力的重要因素,也是一個能對淬火裂紋賦 於重要乃至決定性影響的因素。為了達到淬火的目的,通常必須加速零件在高溫段內的冷卻 速度,並使之超過鋼的臨界淬火冷卻速度才能得到馬氏體組織。就殘餘應力而論,這樣做由於 能增加抵消組織應力作用的熱應力值,故能減少工件表面上的拉應力而達到抑制縱裂的目 的。其效果將隨高溫冷卻速度的加快而增大。而且,在能淬透的情況下,截面尺寸越大的工件, 雖然實際冷卻速度更緩,開裂的危險性卻反而愈大。這一切都是由於這類鋼的熱應力隨尺寸 的增大實際冷卻速度減慢,熱應力減小,&127;組織應力隨尺寸的增大而增加,最後形成以組 織應力為主的拉應力作用在工件表面的作用特點造成的。並與冷卻愈慢應力愈小的傳統觀念 大相徑庭。對這類鋼件而言,在正常條件下淬火的高淬透性鋼件中只能形成縱裂。避免淬裂 的可靠原則是設法盡量減小截面內外馬氏體轉變的不等時性。僅僅實行馬氏體轉變區內的緩 冷卻不足以預防縱裂的形成。一般情況下只能產生在非淬透性件中的弧裂,雖以整體快速冷 卻為必要的形成條件,可是它的真正形成原因,卻不在快速冷卻(包括馬氏體轉變區內)本身, 而是淬火件局部位置(由幾何結構決定),在高溫臨界溫度區內的冷卻速度顯著減緩,因而沒 有淬硬所致&127;。產生在大型非淬透性件中的橫斷和縱劈,是由以熱應力為主要成份的殘餘 拉應力作用在淬火件中心&127;,而在淬火件末淬硬的截面中心處,首先形成裂紋並由內往外 擴展而造成的。為了避免這類裂紋產生,往往使用水--油雙液淬火工藝。在此工藝中實施高 溫段內的快速冷卻,目的僅僅在於確保外層金屬得到馬氏體組織,&127;而從內應力的角度來

看,這時快冷有害無益。其次,冷卻後期緩冷的目的,主要不是為了降低馬氏體相變的膨脹速 度和組織應力值,而在於盡量減小截面溫差和截面中心部位金屬的收縮速度,從而達到減小 應力值和最終抑制淬裂的目的。
三、殘餘壓應力對工件的影響 滲碳表面強化作為提高工件的疲勞強度的方法應用得很廣泛的原因。一方面是由於它能有效 的增加工件表面的強度和硬度,提高工件的耐磨性,另一方面是滲碳能有效的改善工件的應 力分佈,在工件表面層獲得較大的殘餘壓應力,&127;提高工件的疲勞強度。如果在滲碳后再 進行等溫淬火將會增加表層殘餘壓應力,使疲勞強度得到進一步的提高。有人對 35SiMn2MoV 鋼滲碳後進行等溫淬火與滲碳后淬火低溫回火的殘餘應力進行過測試其
熱處理工藝 殘餘應力值(kg/mm2)
滲碳后 880-900 度鹽浴加熱,260 度等溫 40 分鐘
-65

滲碳后 880-900 度鹽浴加熱淬火,26

 

0 度等溫 90 分鐘
-18

滲碳后 880-900 度鹽浴加熱,260 度等溫 40 分鐘,260 度回火 90 分鐘
-38
表 1.35SiMn2MoV 鋼滲碳等溫淬火與滲碳低溫回火后的殘餘應力值
從表 1 的測試結果可以看出等溫淬火比通常的淬火低溫回火工藝具有更高的表面殘餘壓應 力。等溫淬火后即使進行低溫回火,其表面殘餘壓應力,也比淬火后低溫回火高。因此可以 得出這樣一個結論,即滲碳后等溫淬火比通常的滲碳淬火低溫回火獲得的表面殘餘壓應力更 高,從表面層殘餘壓應力對疲勞抗力的有利影響的觀點來看,滲碳等溫淬火工藝是提高滲碳 件疲勞強度的有效方法。滲碳淬火工藝為什麼能獲得表層殘餘壓應力?滲碳等溫淬火為什麼 能獲得更大的表層殘餘壓應力?其主要原因有兩個:一個原因是表層高碳馬氏體比容比心部 低碳馬氏體的比容大,淬火后表層體積膨脹大,而心部低碳馬氏體體積膨脹小,制約了表層的 自由膨脹,&127;造成表層受壓心部受拉的應力狀態。而另一個更重要的原因是高碳過冷奧氏 體向馬氏體轉變的開始轉變溫度(Ms),比心部含碳量低的過冷奧氏體向馬氏體轉變的開始 溫度(Ms)低。這就是說在淬火過程中往往是心部首先產生馬氏體轉變引起心部體積膨脹, 並獲得強化,而表面還末冷卻到其對應的馬氏體開始轉變點(Ms),故仍處於過冷奧氏體狀 態,&127;具有良好的塑性,不會對心部馬氏體轉變的體積膨脹起嚴重的壓製作用。隨著淬火 冷卻溫度的不斷下降使表層溫度降到該處的(Ms)點以下,表層產生馬氏體轉變,引起表層體 積的膨脹。但心部此時早已轉變為馬氏體而強化,所以心部對錶層的體積膨脹將會起很大的 壓製作用,使表層獲得殘餘壓應力。&127;而在滲碳後進行等溫淬火時,當等溫溫度在滲碳層 的馬氏體開始轉變溫度(Ms)以上,心部的馬氏體開始轉變溫度(&127;Ms)點以下的適當溫 度等溫淬火,比連續冷卻淬火更能保證這種轉變的先後順序的特點(&127;即保證表層馬氏體 轉變僅僅產生於等溫后的冷卻過程中)。&127;當然滲碳后等溫淬火的等溫溫度和等溫時間對 表層殘餘應力的大小有很大的影響。有人對 35SiMn2MoV 鋼試樣滲碳后在 260℃和 320℃等溫
40&127;分鐘后的表面殘餘應力進行過測試,其結果如表 2。由表 2 可知在 260℃行動等溫比 在 320℃等溫的表面殘餘應力要高出一倍多 ,可見表面殘餘應力狀態對滲碳等溫淬火的等溫溫度是很敏感的。不僅等溫溫度對錶面殘餘壓 應力狀態有影響,而且等溫時間也有一定的影響。有人對 35SiMn2V 鋼在 310℃等溫 2 分鐘,10 分鐘,90 分 鐘的殘餘應 力進行過測 試。2 分鐘 后殘餘壓應 力為-20kg/mm,10 分鐘後為 -60kg/mm,60 分鐘後為-80kg/mm,60 分鐘后再延長等溫時間殘餘應力變化不大。 從上面的討論表明,滲碳層與心部馬氏體轉變的先後順序對錶層殘餘應力的大小有重要影 響。滲碳后的等溫淬火對進一步提高零件的疲勞壽命具有普遍意義。此外能降低表層馬氏體 開始轉變溫度(Ms)點的表面化學熱處理如滲碳、氮化、氰化等都為造成表層殘餘壓應力提 供了條件,如高碳鋼的氮化--淬火工藝,由於表層,&127;氮含量的提高而降低了表層馬氏體 開始轉變點(Ms),淬火后

 

獲得了較高的表層殘餘壓應力使疲勞壽命得到提高。又如氰化工 藝往往比滲碳具有更高的疲勞強度和使用壽命,也是因氮含量的增加可獲得比滲碳更高的表 面殘餘壓應力之故。此外,&127;從獲得表層殘餘壓應力的合理分佈的觀點來看,單一的表面 強化工藝不容易獲得理想的表層殘餘壓應力分佈,而複合的表面強化工藝則可以有效的改善 表層殘餘應力的分佈。如滲碳淬火的殘餘應力一般在表面壓應力較低,最大壓應力則出現在 離表面一定深度處,而且殘餘壓力層較厚。氮化后的表面殘餘壓應力很高,但殘餘壓應力層很 溥,往裡急劇下降。如果採用滲碳--&127;氮化複合強化工藝,則可獲得更合理的應力分佈狀 態。&127;因此表面複合強化工藝,如滲碳--氮化,滲碳--&127;高頻淬火等,都是值得重視的 方向。
根據上述討論可得出以下結論;
1、熱處理過程中產生的應力是不可避免的,而且往往是有害的&127;。但我們可以控制熱處 理工藝盡量使應力分佈合理,就可將其有害程度降低到最低限度,甚至變有害為有利。
2、當熱應力佔主導地位時應力分佈為心部受拉表面受壓,當組織應力佔主導地時應力分佈為 心部受壓表面受拉。
3、在高淬透性鋼件中易形成縱裂,在非淬透性工件中往往形成弧裂,在大型非淬透工件中容 易形成橫斷和縱劈。
4、滲碳使表層馬氏體開始轉變溫度(Ms)點下降,可導至淬火時馬氏體轉變順序顛倒,心部 首先發生馬氏體轉變而後才波及到表面,可獲得表層殘餘壓應力而提高抗疲勞強度。
5、滲碳後進行等溫淬火可保證心部馬氏體轉變充分進行以後,表層組織轉變才進行。&127; 使工件獲得比直接淬火更大的表層殘餘壓應力,可進一步提高滲碳件的疲勞強度。
6、複合表面強化工藝可使表層殘餘壓應力分佈更合理,可明顯提高工件的疲勞強度。

 

Bookmark the permalink ,來源:
One thought on “熱處理知識