高速加工機床的設計與應用(三)

  • 分類  >  機床 >
  • 高速加工機床的設計與應用(三)
   時間:2014-03-12 02:32:39
高速加工機床的設計與應用(三)簡介
    改進回珠器和滾道的設計製造質量,使滾珠的循環更流暢,摩擦損耗更少;   採用滾珠絲杠固定,螺母與聯結在移動部件上的伺服電機集成在一起完成旋轉和移動,從而……
高速加工機床的設計與應用(三)正文

  改進回珠器和滾道的設計製造質量,使滾珠的循環更流暢,摩擦損耗更少;

採用滾珠絲杠固定,螺母與聯結在移動部件上的伺服電機集成在一起完成旋轉和移動,從而避開了絲杠受臨界轉速的限制等。

經過採取這些改進措施后,滾珠絲杠傳動的進給方式可提供的進給/快移速度達60m/min~90m/min,加速度可達1~2g。但是由於受到原理結構的限制,要想進一步提高滾珠絲杠傳動的運動速度和加速度很難了,而且受絲杠的可製造長度限制,滾珠絲杠傳動所能提供的運動行程也是有限的。

與上述的通過滾珠絲杠間接傳動的方式相比,採用直線電機直接驅動的主要特點和優點是將伺服電機的定子和動子分別直接與機床床身及移動部結合在一起,沒有了中間環節,傳動鏈的長度縮短為零,即實現了所謂的「零傳動」,從而大大提高了機械剛度,減少了傳動系統的慣量,獲得更高的速度和加速度能力,並易於控制系統的阻尼力和動態特性,直線電機最高的進給/快速度可達120m/min乃至240m/min,加速度可達2~10g;行程長度可不受限制;適應性強,靈敏度高,隨動性好,不存在反向間隙,可利用直線光柵尺作為測量反饋元件,實現全閉環控制,以獲得更高的定位精度和跟蹤精度等。

但是,直線電機直接驅動也存在一些缺點:如效率低,功耗大,結構尺寸和自重也相對較大;工作過程溫升高,要求強冷卻;因受磁場力影響易於吸引鐵屑和金屬物,故需考慮防磁措施等,特別是要注意的是它的加速度值直接反比於運動部件的載荷量(工作台/滑座自重加上工件及其他外載荷),即對運動載荷較敏感,故宜用於運動件載荷恆定或變化量不大的場合,在載荷變化重大的情況下,必需能在數控編程時予以考慮,否則不能保證加工所要求的效率和質量。另外,直線電機直接驅動不具自鎖能力,設計和使用中應注意考慮外加制動措施,特別是在垂直軸進給系統中使用時,尤要注意。

二、各軸進給運動的相互結構聯繫

如同一般加工機床一樣,高速加工機床一般都有2個以上,多至5個進給運動軸,這些運動軸間的相互結構聯繫,目前存在著串聯,並聯和混聯三種型式。

串聯結構是傳統機床普遍採用的型式,其特點是各運動軸的布局採用笛卡爾直角坐標系,機床床身、立柱、溜板、工作台/轉檯和主軸箱等部件分別通過相應的導軌支承面串聯在一起的,各軸運動均可單獨地獨立進行,由於是串聯,各運動部件的重量往往都較大,且不一致,需特殊調整方可保持各軸加速度特性的一致性;進給系統的結構件不僅受拉、壓力,而且受彎、扭力矩的作用,變形複雜,后運動部件受到先運動部件的牽動和加速,加工誤差由各軸運動誤差線性迭加而成,且受導軌精度的影響等,這些都是串聯結構的缺點。然而由於串聯結構較傳統,有長期設計、製造和應用的經驗,技術較成熟,故迄今仍為大多數高速加工機床所採用。但串聯結構中還有著不同的各運動軸的相互組合配置方式,其所獲得的應用效果是不一樣的,設計時應以高速加工的特點及其對機床結構設計的要求出發來確定。

並聯結構的典型代表是Stewart平台式的所謂虛擬軸機床。它的特點是運動部件是一個由伺服電機分別控制的6根可自由伸縮的杆子所支承的動平台,該平台可同時作6個自由度的運動,但沒有像串聯結構那樣的物理上固定的X、Y、Z軸和相應的運動支承導軌,而且任何一軸運動都必須由6根可伸縮桿的協同運動來完成。一般刀具/主軸頭就安裝在該動平台上,工件則固定在機床的機架上,此外就不再有溜板、導軌等支承件了。與傳統串聯結構的機床相比,並聯結構型式的機床主要有如下優點:

運動部件重量輕,慣量小,更有利於實現進給運動高的速度和加速度;

刀具主軸頭可同時實現5軸聯動,結構簡單,且主要的6根伸縮桿具有相同的結構和驅動方式,便於模塊化,標準化和系列化生產;

伸縮桿的兩端分別由球鉸和虎克鉸鏈與相關件連結,使杆子只受拉、壓力,不受彎扭力作用,剛度高,並易於通過預載入荷來提高整個進給系統的綜合剛度。

理論精度高,因為它不像串聯結構那樣,各軸運動誤差有可能被累積和放大,故並聯結構的進給運動的綜合誤差一般不會大於6根伸縮桿運動誤差的平均值。

並聯結構的缺點是:

在同一台機床上,其進給的行程隨著各伸縮桿的伸出長度和動平台的位姿角變化而變化,故由行程所決定的可加工空間是非規則形,不方便應用;

因受球鉸和虎克鉸轉角的限制,帶主軸頭的動平台所能傾斜的角度較小(一般只有±40°)從而影響了機床的可加工範圍;

運動編程較複雜,而且在任一軸向上的簡單直線運動,也要有6根桿的協調伸縮運動才能完成等。

由於有這些問題的存在,並聯結構的應用,目前尚不十分廣泛,還有待於進一步研究和發展。

混聯結構是在一台機床上同時採用有串聯和並聯結構型式的進給運動的結構聯結,通常的做法是:3個移動坐標仍採用並聯結構來完成,主軸加工時所需的另外2個轉動坐標則由串聯到固定工作台上的迴轉和可傾斜的工作台或由串聯到並聯結構的動平台上的旋轉和擺動主軸頭來實現。但是此時的並聯結構的6根伸縮桿改成了3副定長桿,除桿的一端仍通過球鉸與動平台相聯外,桿的另一端則通過球鉸成組地與滑座聯結,滑座由伺服電機控制的滾珠絲杠(或直線電機)驅動在機床導軌上移動,從而改變動平台(主軸頭)在三維空間中的位置,即X、Y、Z軸的運動行程。這樣既克服了純並聯結構存在的加工空間不規則和動平台可傾角度過小的缺點,而且也減少了三套伺服驅動電機和滾珠絲杠,簡化了結構,降低了成本。這應是並聯機床結構改進的一個方向。

[高速加工機床的設計與應用(三)],你可能也喜歡

  • 室內設計製圖基礎
  • 花鍵加工
  • 花鍵設計
  • 美日機床
  • 機械零件加工
  • CNC精密加工
  • 機械加工方法
  • 沖床機械結構圖
  • 滾動軸承應用技術
  • 機械機構設計
  • 齒輪機構設計
  • autocad機械設計製圖
  • 機械加工理論
  • autocad應用實例說明
  • autocad應用範圍
  • autocad應用行業
  • autocad應用領域
  • 鐵王數控機床
  • 數控機床種類
  • 高速主軸設計
  • 高速切削加工
  • 高速切削定義
  • 高速切削優點
  • 高速切削中心機
  • 花鍵加工用什麼機床
Bookmark the permalink ,來源:
One thought on “高速加工機床的設計與應用(三)